Iron Sequestration in Microbiota Biofilms As A Novel Strategy for Treating Inflammatory Bowel Disease

Motta JP1,2, Allain T1, Green-Harrison LE1, Groves RA1, Feener T2, Ramay H3, Beck PL4, Lewis IA1, Wallace JL2, Buret AG1. Inflamm Bowel Dis. 2018 Jun 8;24(7):1493-1502. doi: 10.1093/ibd/izy116.

Author information

1 Department of Biological Sciences, University of Calgary, University Drive NW, Calgary, Alberta, Canada.

2 Department of Physiology & Pharmacology, University of Calgary, Hospital Drive NW, Calgary, Alberta, Canada.

3 International Microbiome Centre, University of Calgary, Hospital Drive NW, Calgary, Alberta, Canada.

4 Department of Medicine, University of Calgary, Hospital Drive NW, Calgary, Alberta, Canada.


Significant alterations of intestinal microbiota and anemia are hallmarks of inflammatory bowel disease (IBD). It is widely accepted that iron is a key nutrient for pathogenic bacteria, but little is known about its impact on microbiota associated with IBD. We used a model device to grow human mucosa-associated microbiota in its physiological anaerobic biofilm phenotype. Compared to microbiota from healthy donors, microbiota from IBD patients generate biofilms ex vivo that were larger in size and cell numbers, contained higher intracellular iron concentrations, and exhibited heightened virulence in a model of human intestinal epithelia in vitro and in the nematode Caenorhabditis elegans. We also describe an unexpected iron-scavenging property for an experimental hydrogen sulfide-releasing derivative of mesalamine. The findings demonstrate that this new drug reduces the virulence of IBD microbiota biofilms through a direct reduction of microbial iron intake and without affecting bacteria survival or species composition within the microbiota. Metabolomic analyses indicate that this drug reduces the intake of purine nucleosides (guanosine), increases the secretion of metabolite markers of purine catabolism (urate and hypoxanthine), and reduces the secretion of uracil (a pyrimidine nucleobase) in complex multispecies human biofilms. These findings demonstrate a new pathogenic mechanism for dysbiotic microbiota in IBD and characterize a novel mode of action for a class of mesalamine derivatives. Together, these observations pave the way towards a new therapeutic strategy for treatment of patients with IBD.

© Copyright 2013-2024 GI Health Foundation. All rights reserved.
This site is maintained as an educational resource for US healthcare providers only. Use of this website is governed by the GIHF terms of use and privacy statement.